A Three-Point Combined Compact Difference Scheme

نویسندگان

  • Peter C. Chu
  • Chenwu Fan
چکیده

A new three-point combined compact difference (CCD) scheme is developed for numerical models. The major features of the CCD scheme are: three point, implicit, sixth-order accuracy, and inclusion of boundary values. Due to its combination of the first and second derivatives, the CCD scheme becomes more compact and more accurate than normal compact difference schemes. The efficient twin-tridiagonal (for calculating derivatives) and triple-tridiagonal (for solving partial difference equation with the CCD scheme) methods are also presented. Besides, the CCD scheme has sixth-order accuracy at periodic boundaries and fifth-order accuracy at nonperiodic boundaries. The possibility of extending to a three-point eighth-order scheme is also included. c © 1998 Academic Press

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Three-Point Sixth-Order NonuniformCombined Compact Difference Scheme

A three-point nonuniform combined compact difference (NCCD) scheme with sixth-order accuracy is proposed for numerical models. The NCCD scheme is a generalization of the previously proposed combined compact difference (CCD) scheme with a global Hermitan polynomial spline and has major improved features such as error and computational (CPU) time reduction. For nonperiodic boundaries, additional ...

متن کامل

A Compact Scheme for a Partial Integro-Differential Equation with Weakly Singular Kernel

Compact finite difference scheme is applied for a partial integro-differential equation with a weakly singular kernel. The product trapezoidal method is applied for discretization of the integral term. The order of accuracy in space and time is , where . Stability and convergence in  norm are discussed through energy method. Numerical examples are provided to confirm the theoretical prediction ...

متن کامل

High Accuracy and Scalable Multiscale Multigrid Computation for 3D Convection Diffusion Equation

We present a sixth order explicit compact finite difference scheme to solve the three dimensional (3D) convection diffusion equation. We first use multiscale multigrid method to solve the linear systems arising from a 19-point fourth order discretization scheme to compute the fourth order solutions on both the coarse grid and the fine grid. Then an operator based interpolation scheme combined w...

متن کامل

Combined compact difference scheme for linear second-order partial differential equations with mixed derivative

A combined compact difference scheme is proposed for linear second-order partial differential equations with mixed derivative. The scheme is based on a nine-point stencil at interior with sixth-order accurate local truncation error. Fourier analysis is used to analyze the spectral resolution of the proposed scheme. Numerical tests demonstrate at least sixth-order convergence rate with Dirichlet...

متن کامل

Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry

The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998